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Let a body pass from a state of strain A into an infinitely close state 

of strain B (at constant temperature). The indication that this change 

of state is accompanied by plastic deformation is, by definition, the 

change of the plastic component of the total strain. ‘lhis statement, 

appearing to be a tautology, actually contains the hypothesis of unload- 

ing. The states of stress and strain should be homogeneous; in the state 

A the plastic strain should be determined by unloading, and then the 

original loading should restore the state; after this, the loading should 

be changed to its value in the state B, and the unloading should be re- 

peated in order to determine the change of the plastic component of 

strain. The hypothesis of unloading is valid only with certain accuracy 

and, therefore, the described criterion for increment of plastic strain 

during the change of state from A to B is approximate, as it is inherent 

to a physical criterion. 

We can give also another definition and another criterion. Let us con- 

sider an arbitrary process AB; by changing the loading, we return the 

body from the state of strain B into the state of strain A, and thus we 

perform a closed cycle of deformation ABA; every intermediate state is 

assumed to be an equilibrium state. We shall consider that the transition 

from A to B is accompanied by plastic deformations if the work of ex- 

ternal forces on the closed cycle ABA is positive, and it is purely 

elastic if the work is zero. This energetic definition we shall call the 

postulate of plasticity. It gives a definition of plastic deformation 

which is independent from the hypothesis of unloading, and it also indi- 

cates a specific method of experimental test. 

There is no reason to reject any one of the above definitions of 

plastic strain and, therefore, they should be compatible. Hence, as we 

shall see, important consequences will be derived. 

Both definitions confirm irreversibility of the process of plastic 
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deformation. Some authors [I I are inclined to consider that the postu- 

late of Drucker asserts the irreversibility of the process of plastic 

deformation. Drucker's postulate states that if the body passes from the 
state B into the state A,, in which the loading returns to its original 
value (i.e. as in the state A), then the work of additional loading on 
this closed cycle of loading ABA, should be non-negative. But this work 
is equal to zero not only for an elastic process, but also for non- 
hardening solids and in some irreversible processes, for instance, in 
the extension of a specimen in the plastic flow range. This means that 
the Drucker’s postulate does not specify the irreversibility of the pro- 
cess of plastic deformation, but is a special hypothesis. 

We shall assume in the following that the reader is familiar with the 
papers [ 2,3,4 1; we shall use the postulate of isotropy and the isotropic 
spaces of the deformation vector a and the stress vector b: Let the pro- 
cess of deformation, at some instant of time, be determined by a progress- 
ing trajectory OK and the point K, and let FK = 0 be the equation of the 
yield surface in the deformation space and thus the points inside of this 

surface correspond to the possible states of unloading, 
outside correspond to the states of increasing loading. 
loading, we move from the point K to a nearby point P; 
face changes and its equation becomes Fp = 0. Figure la 

cess: the deformation ag and the plastic deformations 

and the points 
By increasing 
the yield sur- 
shows this pro- 

3: and 3; , 

a 

Fig. 1. 

,b 

Figure lb shows the same process in the space of stresses. Let the point 
M in Fig. la correspond to unloading (i.e. the stress equal to the 
initial stress u&) and let the point N, coinciding with K, close the 
process in strain; in Fig. lb the points K and M coincide. ‘Ihe examina- 
tion of Figs. la and lb reveals that the points M and N are located in- 
side the surface Fp, and therefore the work of the total stress (I on the 
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path KPK (Fig. la) is equal to the work along 

denote the work by W: 
the path KPMK. Let us 

TV z s . 
u da -= \ 5 da (1) 

KPK KPhK 

Since the work of the constant stress aK on this path is equal to 

zero, it follows that 

‘cI;= P 
I ( 

Q- UK) ds 
h-PNK 

‘Ihe part of this integral on the path KPM represents the work of 
additional stresses, which enter into Drucker's postulate. We denote 

this work by WD and obtain 

w--o= \ (5-GK)ds, WD = 
5 

(G - uK) da (2) 
MK KPM 

According to the definition of the point M, we have uK = uy along the 
path MP, and since only the elastic strain changes, it is &== d 

($ - 3$). Co nsi d ering the law of elasticity for the path MP, we have 

Q-GM=(e), (3e -3g 

where (E)p is the matrix of the moduli of elasticity with respect to the 

point P. We conclude then that the difference 

I4’ - WD = (E)p (3"-- s&) d (3e- 3&)> 0 

MK 

represents the elastic strain energy corresponding to the difference of 

elastic deformations a&- a&, i.e. a positive quadratic form. This 
means that W> WD. Furthermore, this indicates that the postulate of 
plasticity is more general, less restrictive, than Drucker's postulate, 

and that the latter is a sufficient but not necessary condition in the 

framework of the former. 

We shall consider now some essential consequences of the two defini- 

tions, given above, of the process of plastic deformation without the use 

of JIrucker's postulate. Figure 2 shows again the process OK in the space 
of deformation, the surface of flow FK= 0, and the vector of plastic 

deformation 3°K for K. By way of unloading, we move the body into the 
state represented by the point M, and then we perform a process MTPTM 
closed with respect to deformation. lhe point T is located on the SYT- 
face FK and is determined by the length x of the segment MT and the 
unit vector t; the point P is determined by a small segment 5 and the 



unit vector e in the region of additional loading. The vector of plastic 
deformation then becomes a& and the 
yield surface is Fp = 0. ‘Ihe change of 
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the vector of plastic deformations is 
denoted by 

A3'=3$- 3%= cp 

with p being a unit vector. 

On the basis of the postulate of 
plasticity we have 

W = 5 adal), 
MTPTM 

As the quantity 6 is small, the 0 

matrix of elastic moduli (E) changes Fig. 2. 

linearly with C$ in the transition from 
T to P, and therefore, at any inter- 
mediate point M and at the point P, it is 

(% = (% + f’ [$ Pfj,* (E), = (E), + E [f (E)j7 

with, obviously, (E) T = (E)K. ‘Ihe sum of the integrals (4) along the 
paths TP and PT 

is, on the basis of (51, a small quantity of the order 12. Retaining in 
(4) quantities of the order 6 only, we obtain 

w = 1 (@MT - UTM) t dz’ 
0 

where &UT is to be calculated from the elastic deformation a + x’t and 
with 
from 

thg’matrix of elastic moduli (BIT, while uTy is to be calculated 
the elastic deformation a + x’t - <p and with the matrix (Elp. We 

thus have 
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and the work is equal to 

w = !J K.(E’), B + E .&q,‘h] * t f + 22.g (II),‘. t (6) 

On the basis of 
at the point T (at 
(6) into the form 

where the notation 

(3) and considering that b is the elastic deformation 
the crossing of the flow surface FK), we transform 

W = @QO. t + +~t (E)‘. t 

for a new physical vector is introduced 

(7) 

cf = ,(E) g - (E)’ 3e 

and (E)‘.is the derivative of the matrix (E) with respect to the defor- 
mation 5 in the direction e. 

Since, obviously 

the derivative of the matrix can be eliminated from the expression for 
00, and we thus obtain 

This vector, evidently, does not depend on the position of the point 
M, but only on T and the direction TP. Let us assume a point M in the 
vicinity of T on the surface FK = 0 (approaching it from inside); t thus 
becomes a vector in the hyperplane tangent to FK. From the postulate of 
plasticity and from (7) we obtain u” l t > 0 for any vector t. Ibis is 
possible only in the case if u” l t = 0. Thus the physical vector up is 
normal to the flow surface at the point T, i.e. 

Let us consider 
ing the vectors UP 

Q’ = D grad FK (9) 

now a two-dimensional plane normal to FL and contain- 
and t; it intersects the flow surface along a line. 

The distance from this line to the tangent hyperplane (measured in the 
mentioned two-dimensional plane) can be expressed in terms of the dis- 
tance n and the curvature K of the line in the form z= 1/2~x*, where 
K is considered to be positive if the line is concave. In the second 
approximation, the scalar product u” l t is equal to - l/2 K xl u” 1 , and 
therefore we obtain from (7) 
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w = $zy [- x ) a0 ( + t (Eytl 

Since 5 > 0, we obtain from W > 0 

-4q + t(B)‘t>O (10) 

Ihis, in general, does not imply the convexity of the surface FK, 
although convex surfaces satisfy this condition.. 

The assumption of the postulate of plasticity for an analogous pro- 
cess in the space of stresses leads to the following analogous results. 
‘Ihe physical vector 

(11) 

is normal to the -yield surface in the space of stresses fK = 0. Here, 
dZ=IdaI and (8’) = 02)“. 

If a trajectory in the form of a polygonal line is considered [ 3 1 , 
the substitution 

G”dr, = Gdf (12) 

is introduced into (11)) the expressions (5.1) and (1.10) of [ 3 1 are 
used, and considering that in the case discussed 

we obtain 

gradfK = Igradf&- 

In conclusion, let us summarize the obtained results. New relations 
between the physical vectors uQ and a” and the yield surfaces FK and 
fK are given. One of these relations, for the particular case of absence 
of deformational anisotropy, was obtained earlier by Drucker from his 
postulate. Now it has been shown that the results of Drucker and the new 
relations are the consequences of more general plastic properties of 
solids than those canpatible with Drucker’s postulate. 
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